Math 20550 - Summer 2016 Double Integrals June 29, 2016

Problem 1. Compute $\int_{-1}^{1} \int_{-2}^{2} (x^2 - y^2) dy dx$.

Problem 2. Compute the integral $\int_0^{\pi} \int_0^{\sin x} (1 + \cos x) dy dx$.

Problem 3. Find the area bounded by the curves $y = 4 - x^2$ and y = x + 2.

Problem 4. Switch the order of integration in the integral $\int_1^{10} \int_0^{\ln y} f(x,y) dx dy$.

Problem 5. Switch the order of integration to combine the two integrals into one, then compute the integral:

$$\int_0^2 \int_0^x dy dx + \int_2^4 \int_0^{4-x} dy dx.$$

Problem 6. Compute the integral $\int_0^4 \int_{\sqrt{x}}^2 \frac{3}{2+y^3} dy dx$.

Problem 7. Compute the integral $\int_0^2 \int_x^2 x \sqrt{1+y^3} dy dx$.

Problem 8. Compute the integral $\int_0^3 \int_0^\infty \frac{x^2}{1+y^2} dy dx$.

Problem 9. Find the volume under the surface $z = 4 - y^2$ which lies above the region R in the xy-plane which is bounded by the y-axis, y = 2, and y = x.

Problem 10. Find the volume of the solid bounded by the xy-plane, the planes y = 1, x = 0, y = x, and the surface z = 1 - xy.

Problem 11. Set up a double integral which computes the volume bounded by the paraboloids $z = 1 - x^2 - y^2$ and $z = x^2 + y^2 - 1$.

Problem 12. Give a geometric argument to show that

$$\int_0^3 \int_0^{\sqrt{9-y^2}} \sqrt{9-x^2-y^2} dx dy = \frac{9\pi}{2}.$$

Problem 13 (Challenge?). Determine the region R which minimizes the value of the integral

$$\iint_R (x^2 + y^2 - 4) dA.$$